BSE 4344 – Geographic Information Systems for Engineers

Credit / contact hours: 3 credits, 5 contact hours

Course instructor: V. Sridhar

Textbook / materials:
suggested textbook:

Catalog description:
The objectives of this course are to develop necessary skills and knowledge related to the applications of Geographic Information Systems (GIS) in pre- and post-processing of model inputs and outputs, spatial analysis and interpretation; real-world water resource problems and integration of external models

Co-requisites: NA

Pre-requisites: BSE 3324

Course type: elective in the program

Specific outcomes of instruction:
1. Identify types of products and applications of GIS
2. Discuss the nature and characteristics of spatial data and objects
3. List and define GIS operations.
4. Describe and evaluate methods of data capture and sources of data
5. Describe the characteristics, advantages and disadvantages of different models
6. Discuss factors affecting errors, accuracy, and data quality
7. Categorize and describe spatial analysis functions
8. Demonstrate spatial analysis operations using sample data sets and GIS software
9. Describe and demonstrate applications of GIS
10. Implement GIS models to solve engineering problems using available software

Student outcomes addressed by course:
Outcome 1: an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

Outcome 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

Outcome 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies
List of topics covered:

• Basics of GIS
 Components of a GIS
 Geospatial Data
 GIS operations

• Coordinate Systems
 Map projections
 Projected and Predefined Coordinated systems
 On-the-Fly Projections

• Vector Data Model
 Representation of simple features
 Topology
 Representation of composite features
 Geodatabase

• Raster Data Model
 Elements of the Raster Data Model
 Types of Raster Data
 Data structure, data conversion and integration
 Integration of raster and vector data

• Data Exploration
 Remotely sensed data
 Descriptive Statistics
 Attribute and spatial data query

• Raster Data Analysis
 Local and neighborhood operations
 Zonal operations

• Vector Data Analysis
 Buffering and overlay
 Pattern Analysis

• Hydrological Modeling
 ArcSWAT, HEC-GEOHMS and other suitable models